PIDP: 3260

PROFESSIONAL
PRACTI

tttttttttttttttttt

INnstrruct

Reflective
Writing Two

PIDP: 3260 | Assignment 1b: Reflective Writing: Too Fast, Too Far: From Velocity to Validation | Author: Yuri Tricys ITrnstrruct

Objective

Chapter 16 of Stephen Brookfield’s book, “The Skillful Teacher”, titled: “Understanding student’s
resistance to learning”, lists multiple reasons teachers may encounter student resistance to learning.

Some of the headings in his chapter include:

e Poor self-image as learners

e Fear of the unknown

e Anormal rhythm of learning

e Adisjunction of learning and teaching styles
o Apparentirrelevance of the learning activity
» Level of required learning is inappropriate

o Fear of looking foolish in public

e Cultural suicide

o Lackof clarity in teachers’ instructions

o Students’ dislike of teachers

» (oing too far, too fast

These headings are each followed by explanations of how they may prompt students to resist learning.
The quote below is from the last heading, ‘Going Too Far, Too Fast.’

"[...]1 know an error I've made multiple times over is to push too far, too fast. Because I find critical
thinking so intriguing and pleasurable, it comes easily to me. Consequently, | can easily mistime my

efforts to get students to apply it to their own reasoning and actions."”

(Brookfield, 2015, R 224)

The quote addresses the pitfall of accelerating student learning beyond their readiness, particularly in
critically challenging material.

Brookfield acknowledges his own tendency to rush students into critical thinking exercises because he
finds the process inherently stimulating, creating a mismatch between his enthusiasm and their
capacity to engage. This concept parallels web development instruction, where pushing students too
quickly into advanced tooling (e.g., React, Node.js), or complex frameworks, without mastering
foundational skills (HTML/CSS, JavaScript syntax) risks confusion and disengagement.

What caught my attention is the disconnect between the instructor’s expertise and the learner’s
vulnerability — highlighting how assumptions about “natural” enthusiasm can undermine effective
teaching.

Reflective

I chose this quote because | secretly suspect it mirrors challenges in teaching web development, a field
where staggered progress is crucial.

13

PIDP: 3260 | Assignment 1b: Reflective Writing: Too Fast, Too Far: From Velocity to Validation | Author: Yuri Tricys ITrnstrruct

Programming is inherently difficult for several reasons, including:

1. Abstract Concepts (e.g., closures, asynchronous programming, modularity) require time to
internalize without real-world analogs.

2. Cumulative Structure: Skipping CSS layout logic, or naming conventions, before teaching
Flexbox or CSS Grid can lead to partial understanding and bad habits.

3. Varying Baselines: Beginners in coding often lack familiarity with logic structures or
computational thinking, making rapid-fire lessons inaccessible.

4. Mastering Tool Use: Configuring tools takes time away from understanding material —yet it's an
essential skill for productivity.

5. Conceptual Leaps: Moving from basic syntax to patterns, like MVC (Model-View-Controller) and
OOP (object-oriented programming), demands significant cognitive restructuring.

6. Hidden Dependencies: Understanding why a framework does something requires context about
underlying systems (HTTP, browser rendering) often glossed over.

7. Tool Overload: The sheer volume of tools boxes can distract from actual learning goals, leading
to cognitive fatigue (e.g., 20 frameworks to choose from).

Like Brookfield, | romanticize the excitement of my area of expertise because | love it, but can neglect
the immense amount of gradual scaffolding needed.

Programming isn’t just a cognitive shift, it's technical overload. Students require time to adapt to new
languages, tools, and mindsets.

Interpretive

The core message is that learning is non-linear — students need space to process, fail, and revisit
concepts. Translating this to web development, the practice of throwing everything at them all at once,
to see what sticks, could be revisted. Rushing into sophisticated libraries or APIs before solidifying
basics like base language principles, build pipeline practices, or even responsive design may leave
learners feeling overwhelmed and incompetent.

My instinct is always that faster coverage equals better preparation, but | can easily overlook the
cognitive load novice programmers endure, not to mention other distractions students have to deal with
in their day-to-day lives.

Brookfield's reflection is helpful while | reshape my view: effective instruction prioritizes incremental
mastery alongside the bigger picture, not after it.

Decisional

To apply this insight:

1. Map Cognitive Steps: Break projects into modular tasks (e.g., teaching form validation in vanilla
JavaScript before integrating it into a React app).

2. Formative Feedback: Use low-stakes checkpoints (e.g., code quizzes, peer debugging sessions)
to align pacing with class comprehension.

3. Differentiated Pathways: Offer tiered labs (beginner, intermediate, advanced) for topics like
state management using React or Next context, ensuring no one is left behind or bored.

2/3

PIDP: 3260 | Assignment 1b: Reflective Writing: Too Fast, Too Far: From Velocity to Validation | Author: Yuri Tricys ITrnstrruct

4. Normalize Struggle: Share my own early coding failures (e.g., battling CSS specificity) to
destigmatize slowness as a learning phase.

5. Scaffold Tools: Introduce frameworks only after core syntax and problem-solving patterns are
practiced, much like building critical thinking through iterative debate rather than instant

analysis.

By respecting the “rhythm of learning” Brookfield describes, my teaching can evolve from pushing
learners toward technical outcomes to guiding them through the vulnerabilities of becoming proficient
—a shift that prioritizes depth over speed.

References

Brookfield, S. D. (2015). The skillful teacher. On technique, trust, and responsiveness in the classroom.
Jossey-Bass: John Wiley and Sons Inc.

> used to research,

were performed by the author. Various Al mode

Al Models Used In This Report: Theid cture, writing, and editing in this p

format arguments, and

structure content. Models used include: Qwen 2.5 2) Instruct. MistralAl

collect, and verify data matically

Devstral Small 2505, GPT-5, GPT-Image-1, Google Gemma 3 27b

3/3

