
Author: Yuri Tricys
Date: August 23th, 2025

PIDP: 3260

PROFESSIONAL
PRACTICE Instruct

© COPYRIGHT BUILD HELLO, AUGUST 2025

Reflective
Writing Two

Objective

Chapter 16 of Stephen Brookfield’s book, “The Skillful Teacher”, titled: “Understanding student’s

resistance to learning”, lists multiple reasons teachers may encounter student resistance to learning.

Some of the headings in his chapter include:

Poor self-image as learners

Fear of the unknown

A normal rhythm of learning

A disjunction of learning and teaching styles

Apparent irrelevance of the learning activity

Level of required learning is inappropriate

Fear of looking foolish in public

Cultural suicide

Lack of clarity in teachers’ instructions

Students’ dislike of teachers

Going too far, too fast

These headings are each followed by explanations of how they may prompt students to resist learning.

The quote below is from the last heading, ’Going Too Far, Too Fast.’

The quote addresses the pitfall of accelerating student learning beyond their readiness, particularly in

critically challenging material.

Brookfield acknowledges his own tendency to rush students into critical thinking exercises because he

finds the process inherently stimulating, creating a mismatch between his enthusiasm and their

capacity to engage. This concept parallels web development instruction, where pushing students too

quickly into advanced tooling (e.g., React, Node.js), or complex frameworks, without mastering

foundational skills (HTML/CSS, JavaScript syntax) risks confusion and disengagement.

What caught my attention is the disconnect between the instructor’s expertise and the learner’s

vulnerability – highlighting how assumptions about “natural” enthusiasm can undermine effective

teaching.

Reflective

I chose this quote because I secretly suspect it mirrors challenges in teaching web development, a field

where staggered progress is crucial.

" [...] I know an error I've made multiple times over is to push too far, too fast. Because I find critical

thinking so intriguing and pleasurable, it comes easily to me. Consequently, I can easily mistime my

efforts to get students to apply it to their own reasoning and actions."

(Brookfield, 2015, P. 224)

PIDP: 3260 | Assignment 1b: Reflective Writing: Too Fast, Too Far: From Velocity to Validation | Author: Yuri Tricys

1/3

Programming is inherently difficult for several reasons, including:

1. Abstract Concepts (e.g., closures, asynchronous programming, modularity) require time to

internalize without real-world analogs.

2. Cumulative Structure: Skipping CSS layout logic, or naming conventions, before teaching

Flexbox or CSS Grid can lead to partial understanding and bad habits.

3. Varying Baselines: Beginners in coding often lack familiarity with logic structures or

computational thinking, making rapid-fire lessons inaccessible.

4. Mastering Tool Use: Configuring tools takes time away from understanding material – yet it’s an

essential skill for productivity.

5. Conceptual Leaps: Moving from basic syntax to patterns, like MVC (Model-View-Controller) and

OOP (object-oriented programming), demands significant cognitive restructuring.

6. Hidden Dependencies: Understanding why a framework does something requires context about

underlying systems (HTTP, browser rendering) often glossed over.

7. Tool Overload: The sheer volume of tools boxes can distract from actual learning goals, leading

to cognitive fatigue (e.g., 20 frameworks to choose from).

Like Brookfield, I romanticize the excitement of my area of expertise because I love it, but can neglect

the immense amount of gradual scaffolding needed.

Programming isn’t just a cognitive shift, it’s technical overload. Students require time to adapt to new

languages, tools, and mindsets.

Interpretive

The core message is that learning is non-linear – students need space to process, fail, and revisit

concepts. Translating this to web development, the practice of throwing everything at them all at once,

to see what sticks, could be revisted. Rushing into sophisticated libraries or APIs before solidifying

basics like base language principles, build pipeline practices, or even responsive design may leave

learners feeling overwhelmed and incompetent.

My instinct is always that faster coverage equals better preparation, but I can easily overlook the

cognitive load novice programmers endure, not to mention other distractions students have to deal with

in their day-to-day lives.

Brookfield’s reflection is helpful while I reshape my view: effective instruction prioritizes incremental

mastery alongside the bigger picture, not after it.

Decisional

To apply this insight:

1. Map Cognitive Steps: Break projects into modular tasks (e.g., teaching form validation in vanilla

JavaScript before integrating it into a React app).

2. Formative Feedback: Use low-stakes checkpoints (e.g., code quizzes, peer debugging sessions)

to align pacing with class comprehension.

3. Differentiated Pathways: Offer tiered labs (beginner, intermediate, advanced) for topics like

state management using React or Next context, ensuring no one is left behind or bored.

PIDP: 3260 | Assignment 1b: Reflective Writing: Too Fast, Too Far: From Velocity to Validation | Author: Yuri Tricys

2/3

4. Normalize Struggle: Share my own early coding failures (e.g., battling CSS specificity) to

destigmatize slowness as a learning phase.

5. Scaffold Tools: Introduce frameworks only after core syntax and problem-solving patterns are

practiced, much like building critical thinking through iterative debate rather than instant

analysis.

By respecting the “rhythm of learning” Brookfield describes, my teaching can evolve from pushing

learners toward technical outcomes to guiding them through the vulnerabilities of becoming proficient

– a shift that prioritizes depth over speed.

References

Brookfield, S. D. (2015). The skillful teacher. On technique, trust, and responsiveness in the classroom.

Jossey-Bass: John Wiley and Sons Inc.

 AI Models Used In This Report: The ideas, structure, writing, and editing in this paper were performed by the author. Various AI models were used to research,

collect, and verify data, format arguments, and grammatically structure content. Models used include: Qwen 2.5 235b a22b. Meta Llama 3.1 405b Instruct. MistralAI

Devstral Small 2505, GPT-5, GPT-Image-1, Google Gemma 3 27b

PIDP: 3260 | Assignment 1b: Reflective Writing: Too Fast, Too Far: From Velocity to Validation | Author: Yuri Tricys

3/3

